- 1. Road signs with gunshot holes
	- (a) Poisson sampling because the total number of signs per state is random
	- (b) Either $\chi^2 = 25.46$, χ_1^2 distribution, or $Z = \pm 5.05$, N(0,1) distribution Available in both SAS and R output
	- (c) $\chi^2 = 4.71$, χ_1^2 distribution. Note; This is based on only the data on shot-at signs, with log-time offset Available in the SAS output, but not the R output
	- (d) $Y_{ij} \sim Pois(\exp(o_{ij} * (\mu + \alpha_i)))$. *i* indexes states, *j* indexes road segment (mile) Notes: 1) Y_{ij} : count of shot-at-signs in a road segment o_{ij} : length of that road segment (1 mile by definition) 2) If you answered using $X\beta$, I deducted 2 points because $X\beta$ describes any model! 3) If you added an additional $+\epsilon$, I deducted 2 points, because that is a hangover from normal models
	- (e) estimate log-ratio: $\log \frac{\mu_{UT}}{\mu_{NV}} = 0.0198$ Note: available in SAS output, not in R output
	- (f) se = $0.33 = 0.244*$ √ OD , where the overdispersion factor = 1.86 Note: available in SAS output, not in R output

2. Combines

- (a) 3 sizes of eu: fields, field-parts, and field-bits
- (b) slope \rightarrow fields, design \rightarrow field-parts, and speed \rightarrow field-bits
- (c) The non-zero columns of the Z matrix are:

Notes: The first two observations are from the same field and field-part (because same design). The third observation is a different field and field-part. The fourth is the same field as the third but a different field-part (because different design). Some common issues were including columns for the errors (not part of Z) and including parts of the \boldsymbol{X} matrix.

⁽d)

Source	df
slope	$\overline{2}$
field(slope)	9
design	$\overline{2}$
slope*design	4
part(field, slope)	18
speed	3
speed*slope	6
speed*design	6
speed*slope*design	12
error	81
c. total	143

Note: This stumped everyone and really stumped a few.

3. Vitamin A - study 1

(b) Fixed: age group, type, and age*type interaction Random: subject(age) Note: subject(age) is random because it is an error term

(c)

(a)

$$
E MS = E \frac{nm}{t-1} \sum (\overline{y}_{i...} - \overline{y}_{...})^2
$$

=
$$
\frac{nm}{t-1} E \sum [\mu + \alpha_i + \overline{\beta}_i + \overline{\alpha} \overline{\beta}_i + \overline{\gamma}_i + \overline{\epsilon}_{i...}) - (\mu + \overline{\alpha}_i + \overline{\beta}_i + \overline{\alpha} \overline{\beta}_i + \overline{\gamma}_i + \overline{\epsilon}_{i...})]^2
$$

=
$$
\frac{nm}{t-1} \left[\sum (\alpha_i - \overline{\alpha}_i + \overline{\alpha} \overline{\beta}_i - \overline{\alpha} \overline{\beta}_i)^2 + E \sum (\overline{\gamma}_i - \overline{\gamma}_i)^2 + E \sum (\overline{\epsilon}_{i...} - \overline{\epsilon}_{...})^2 \right]
$$

=
$$
\frac{nm}{t-1} \left[Q(t) + \frac{t-1}{n} \sigma_u^2 + \frac{t-1}{nm} \sigma_e^2 \right]
$$

=
$$
\frac{nm}{t-1} Q(t) + 10\sigma_u^2 + \sigma_e^2
$$

(d)

$$
Var C \overline{Y} = \sum C_i^2 Var \overline{Y}
$$

= $(1 + 1.09 + 1.69) \left(\frac{\sigma_u^2}{10} + \frac{\sigma_e^2}{100} \right)$
= $2.78 \left(\frac{\sigma_u^2}{10} + \frac{\sigma_e^2}{100} \right)$

- (e) E MS for subj $(\text{trt}) = 10\sigma_u^2 + \sigma_e^2$, so the estimate of the desired quantity is $\frac{2.78}{100} MS_{subj(trt)}$.
- 4. Vitamin A study 2
	- (a) σ_e^2 .

Note: A few people calculated the MS. That's not the expected value.

- (b) No. Those observations provide information about the variability between subjects. Notes: Those observations provide no information about the error variance (because there is only one observation per subject). They provide no information about the age group mean (because the 1 df is "used" to estimate the subject effect).
- (c) $\hat{\sigma}_u^2 = 249.3$ The calculations: $MS_{subj} = 57298/42 = 1,364.2, MS_{error} = 4650.6/198 = 23.5,$ $1364.2 = 23.5 + 5.3776\hat{\sigma}_u^2$, and solve for $\hat{\sigma}_u^2$.
- (d) This is a test of $\sigma_u^2 = 0$. F = 1364.7/23.5 = 50.8. Central F distribution with 42,198 df.
- (e) The appropriate denominator is $\sigma_e^2 + 5.7089\sigma_u^2$, which is estimated as $23.5 + 5.7089$ * $249.3 = 1446.7$.
- (f) To get the correct coefficient for σ_u^2 , you need to multiply MS_{subj} by $\frac{5.7089}{5.3776} = 1.0616$. The desired linear combination of Mean Squares is 1.0616 $MS_{subj} - 0.0616 MS_{error}$. Using the Cochran-Satterthwaite approximation, you get

$$
\hat{\nu} = \frac{[1.0616 * 1364.2 - 0.0616 * 23.5]^2}{[1.0616^2 * 1364.2^2 / 42 + 0.0616^2 * 23.5^2 / 198]}
$$

=
$$
\frac{2,093,222.2}{49,937.1 + 200.1}
$$

= 41.7

Note: different amounts of round off will give slightly different answers. If you were close and doing the right thing, you got full credit.